

Version: 5.0

TECHNICAL SPECIFICATION

MODEL NO: PD035QX1

The content of this information is subject to be changed without notice. Please contact PVI or its agent for further information. Customer•s Confirmation Customer Date Ву FOR MORE INFORMATION: PV I s Confirmation AZ DISPLAYS, INC. 75 COLUMBIA, ALISO VIEJO, CA 92656 Http://www.AZDISPLAYS.com

Confirmed By

Prepared By

Revision History

Rev.	Issued Date	Revised Contents
0.1	Sep 11, 2007	Preliminary
0.2	Nov 19, 2007	Modify Page 6
		5.Input / Output Terminals: Pin1~4 Symbol
		Add Page 14
		12. Optical Characteristics
0.3	Feb 1, 2008	Add Page 14
		10-5) Display on Flow
1.0	Feb 21, 2008	Modify Page 8
		7-2) Recommended Driving Condition for Back Light
		ILED from 15mA to 20mA
		Modify Page 6
		5-1) TFT-LCD Panel Driving pin
2.0	Apr 15, 2008	Add Page 16
		12. Optical Characteristics Color Chromaticity
3.0	Aug.11.2008	Add Page 19
3.0	Aug.11.2006	11.Handling Cautions: d) items of 13-1
		ModifyPage 7
4.0	Dec.31.2008	6.Absolute Maximum Ratings:
		Add Storage Temperature & Operation Temperature
5.0	Feb 18, 2009	Modify Page 5
5.0	160 16, 2009	4. Mechanical Drawing of TFT-LCD Module

TECHNICAL SPECIFICATION CONTENTS

NO.	ITEM	PAGE
_	Cover	1
_	Revision History	2
_	Contents	3
1	Application	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of TFT-LCD module	5
5	Input / Output Terminals	6
6	Absolute Maximum Ratings	7
7	Electrical Characteristics	7
8	Pixel Arrangement	9
9	Block Diagram	10
10	AC Characteristics	11
11	Power On Sequence	16
12	Optical Characteristics	16
13	Handling Cautions	19
14	Reliability Test	20
15	Packing Diagram	21

1. Application

This technical specification applies to 3.5" color TFT-LCD module; PD035QX1. The module applies to videophone, door phone and other electronic products, which require high quality flat panel displays. If you must use in high reliability environment can't over reliability test condition.

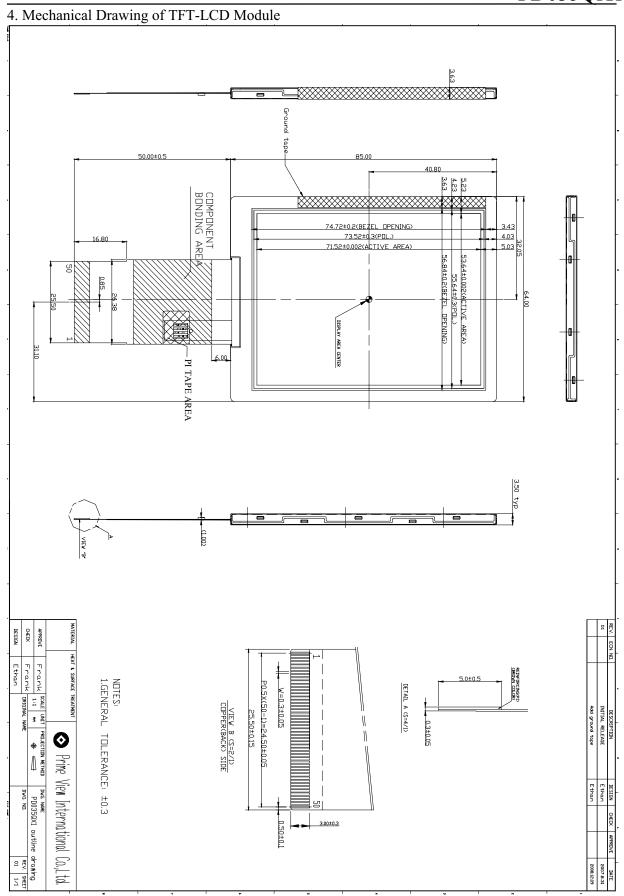
2. Features

. Amorphous silicon TFT LCD panel with LED backlight unit

. Pixel in stripe configuration

. Thin and lightweight

. Display Colors: 262K colors


. Optimum Viewing Direction: 6 o'clock

. Support Interface: 18-bit MCU interface/ 18-bit RGB interface/ 4pin or 3pin serial interface

3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	3.5(diagonal)	inch
Display Format	240×(R, G, B)×320	dot
Display Colors	262K	
Active Area	53.64 (H)×71.52 (V)	mm
Pixel Pitch	0.2235(H)×0.2235(V)	mm
Pixel Configuration	Stripe	
Outline Dimension	64.0(W)×85.0 (H)×3.5 (typ.) (D)	mm
Weight	38.8 <u>+</u> 4	g
Back-light	9-LEDs	
Surface treatment	Anti-glare + EWV	
Display mode	Normally white	
Gray scale inversion direction	6 o'clock	
	[Note 12-1]	

The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.Page:5

5. Input / Output Terminals

5-1) TFT-LCD Panel Driving

Pin No.	Symbol	Function	Remark
PIII NO.	Symbol VLED	Supply voltage for LED Backlight	Remark
2	<u> </u>		
2	GLED1	Cathode of LED Backlight	
3	GLED2	Cathode of LED Backlight	
4	GLED3	Cathode of LED Backlight	N. 4. 5. 1
5	MTP_PWR	MTP programming power Pin	Note 5-1
6	IM0	MCU Interface Select Pin	
7	IM2	MCU Interface Select Pin	Note 5-2
8	P68	MCU Interface mode select Pin	_
9	IM1	MCU Interface Select Pin	
10	RESET	Reset Input Pin	
11	VS	Vertical sync. Single in RGB I/F	
12	HS	Horizontal sync. Single in RGB I/F	
13	PCLK	Pixel clock single in RGB I/F	
14	ENABLE	Data enable single in RGB I/F	
15	D17	MCU Parallel / RGB Interface Data Bus	
16	D16	MCU Parallel / RGB Interface Data Bus	
17	D15	MCU Parallel / RGB Interface Data Bus	
18	D14	MCU Parallel / RGB Interface Data Bus	
19	D13	MCU Parallel / RGB Interface Data Bus	
20	D12	MCU Parallel / RGB Interface Data Bus	
21	D11	MCU Parallel / RGB Interface Data Bus	
22	D10	MCU Parallel / RGB Interface Data Bus	
23	D9	MCU Parallel / RGB Interface Data Bus	
24	D8	MCU Parallel / RGB Interface Data Bus	
25	D7	MCU Parallel / RGB Interface Data Bus	
26	D6	MCU Parallel / RGB Interface Data Bus	
27	D5	MCU Parallel / RGB Interface Data Bus	
28	D4	MCU Parallel / RGB Interface Data Bus	
29	D3	MCU Parallel / RGB Interface Data Bus	
30	D2	MCU Parallel / RGB Interface Data Bus	
31	D1	MCU Parallel / RGB Interface Data Bus	
32	D0	MCU Parallel / RGB Interface Data Bus	
33	SDA	Serial Input/Output Pin	
34		Read enable in 8080-parallel I/P; Read write operation enable pin in	
	RDX(E)	6800-parallel I/P	
2.5	WIDAY D WAY (D (CA)	Write angles in 2020 narellel I/D . Bood write calcution in 6200 narellel	
35	WRX(R/WX)(D/CX)	I/P; In serial I/F for 4-line serial I/F	
36	D/CX(SCL)	Display data/Command Select pin or Serial interface clock	
37	CS	Chip Select Pin	
38	4WSPI	Serial interface select Pin	
39	VCI	Power Supply for Logic and Booster	M-4. 5.2
40	VCI	Power Supply for Logic and Booster	Note 5-3
41	RCM0	RGB or MCU Interface mode selection pin	NI - 5 -
42	RCM1	RGB or MCU Interface mode selection pin	Note 5-4
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	GND	Ground	
48	GND	Ground	
49	GND	Ground	1
50	GND	Ground	
	U.ID	Oroma	

Note 5-1: MTP programming power pin.

Normal Operation: Keep the pin floating

MTP programming: Apply external power 7.0V to this pin

Note 5-2:

	P68	IM2	IM1	IM0	Interface	RDX	WRX	D/CX	Read back selection
	X	0	X	X	Serial interface	Note 1	Note 1	SCL	D[17:0]: Unused, Din+Dout: SDA
ĺ	0	1	1	0	8080 MCU 18-bit Parallel	RDX	WRX	D/CX	D[17:0]: 18-bit Data

Note 5-3: VCI=3.3V

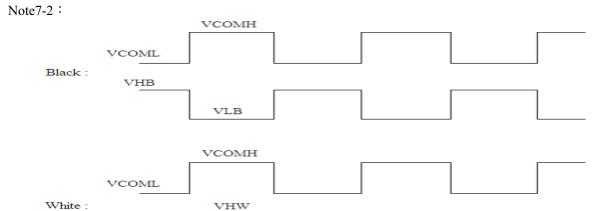
Note 5-4:

RCM1	RCM0	RGB or MCU Interface mode selection pin
0	0	MCU I/F
1	0	RGB I/F

6. Absolute Maximum Ratings:

The followings are maximum values, which if exceeded, may cause faulty operation or damage to the unit.

Item	Symbol	Value	Unit
Supply voltage (Logic)	VCI	-0.3 ~ +4.6	V
Supply voltage (Analog)	VDD	-0.3 ~ +4.6	V
Supply voltage (Digital)	VCC	-0.3 ~ +3.0	V
Driver supply voltage	VGH-VGL	-0.3 ~ +33.0	V
Logic Input voltage range	VIN	-0.3 ∼ VCI +0.3	V
Logic Output voltage range	VO	-0.3 ∼ VCI +0.3	V
Storage Temperature	Tst	-40 ~ +95	°C
Operation Temperature	Тор	-30 ∼ +85	°C


7. Electrical Characteristics

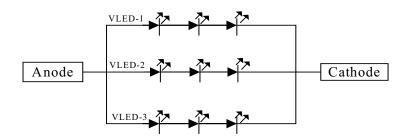
7-1) Recommended Operating Conditions:

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Supply voltage (Logic)	VCI	-	3.2	-	V	
Logic Input voltage range	VIN	3.1	-	3.3	V	
Logic Output voltage range	VO	0.8	-	VCI	V	
TFT Common Electrode Voltage	VCOMH	-	5.02	-	V	Note 7-1
Tra Common Electrode Voltage	VCOML	-	-1.02	-	V	Note /-1
Black of Video Low Voltage	VLB	-	0.6	-	V	
Black of Video High Voltage	VHB	-	5.1	-	V	Note 7-2
White of Video Low Voltage	VLW	-	0.78	_	V	Note /-2
White of Video High Voltage	VHW	-	4.98	-	V	
Gate Driver High voltage	VGH	-	14.67	-	V	
Gate Driver Low voltage	VGL	-	-6.93	-	V	

Note7-1: VCOM must be adjusted optimize display quality, crosstalk, contrast ration and etc.

7-2) Recommended Driving Condition for Back Light

VLW


 $Ta = 25^{\circ}C$

Parameter	Symbol	Min	TYP	MAX	Unit	Remark
Supply voltage of LED backlight	$V_{\text{LED-1}\sim3}$	1	ı	(10.5)	V	Note 7-3
Supply current of LED backlight	I _{LED-1~3}	-	20	-	mA	Note 7-4
Backlight Power Consumption	$P_{ m LED}$	-	-	630	mW	Note 7-3/7-5

Note 7-3: I_{LED}= 20mA, constant current

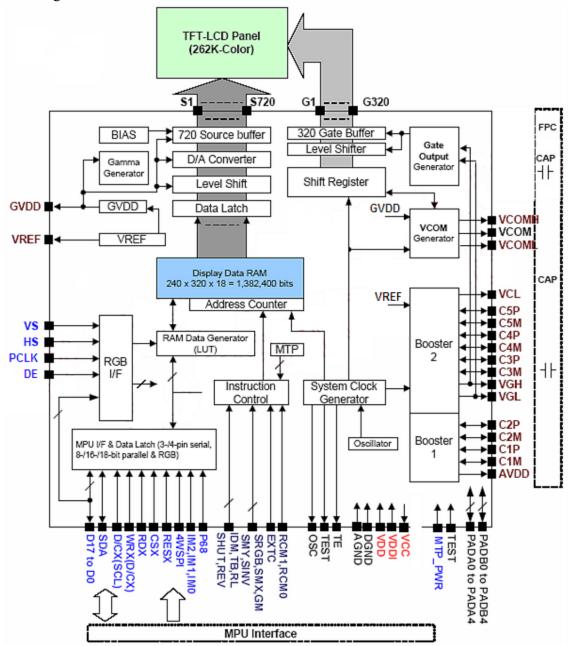
Note 7-4: The LED driving condition is defined for each LED module. (3 LED Serial) Input current = 20mA * 3 = 60mA

Note 7-5:
$$P_{LED} = V_{LED-1} * I_{LED-1} + V_{LED-2} * I_{LED-2} \dots + V_{LED-3} * I_{LED-3}$$

7-3) Power Consumption

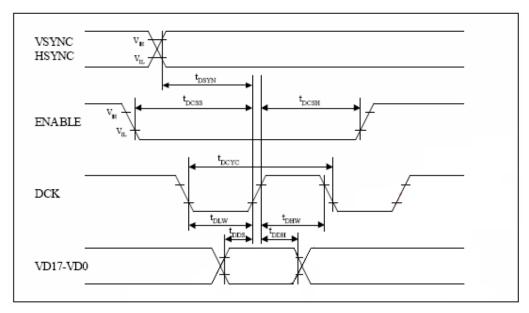
Parameter	Symbol	Condition	Тур.	Max.	Unit	Remark
Supply current for source driver and gate driver	I_{CI}	$V_{CI} = 3.2 \text{ V}$	9.3	23.25	mΑ	
Back Light Power Consumption			-	630	mW	Note 7-3
Total Power Consumption			-	704.4	mW	Note 7-6

Note 7-6: Back light power consumption is calculated by I_L×V_L.


8. Pixel Arrangement

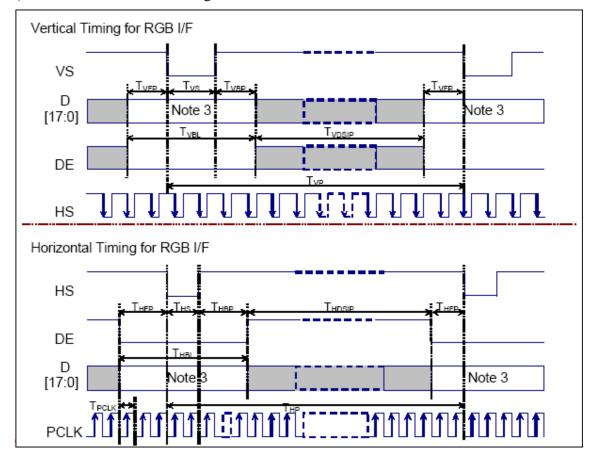
The LCD module pixel arrangement is the stripe.

R G B R G B R G B 1 st Line R G B R G B 2 nd Line R G B 3 rd Line 1 st Pixel 246	R G B R G B R G B						
1 Pixel = R G B							
R G B 318 th Line R G B R G B 319 th Line R G B R G B R G B 320 th Line	R G B						


9. Block Diagram

10. AC Characteristics

10-1) RGB Interface Characteristics

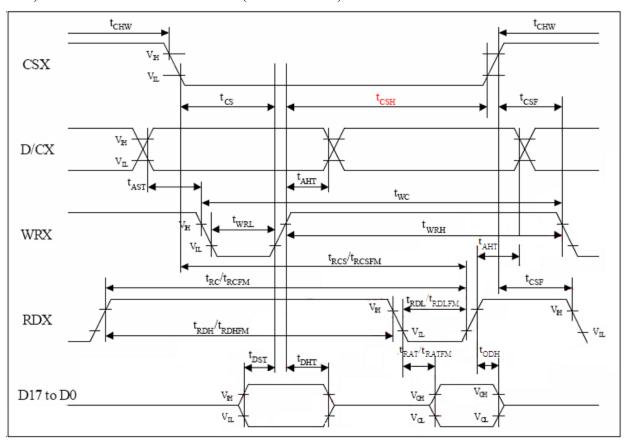


AGND=CGND=VGS=DGND=0V, VDDI=1.65~ 3.3V, VDD=2.5~ 3.3V, Ta=-30~70°C

Symbol	Parameter	Conditions	Related Pins	MIN	TYP	MAX	Unit
tDCYC tDLW tCHW	PCLK cycle time PCLK Low time PCLK High time	-	PCLK	60 15 15	- - -	226 - -	ns
toos toon	RGB Data setup time RGB Data hold time	-	D17-D0	15 15	-	-	ns
tocss tocsh	DE setup time DE hold Time	-	DE	15 15		-	ns
tosyn	SYNC setup time	-	HSYNC, VSYNC	15	-	-	ns

10-2) Vertical and Horizontal timing for RGB I/F

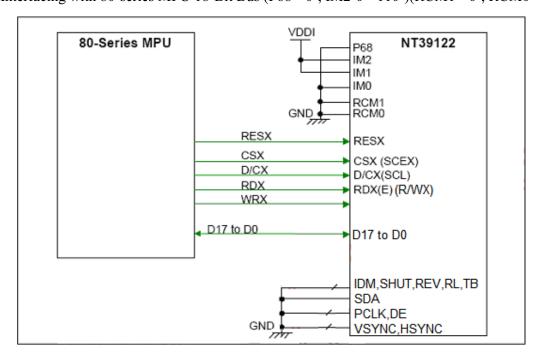
Item	Cumbal	Condition	Specifi	Unit		
Item	Symbol	Condition	Min	Туре.	Max	Unit
Vertical Timing						
Vertical cycle period	T _{VP}		326		330	HS
Vertical low pulse width	T _{VS}		2		4	HS
Vertical front porch	T_{VFP}		2		4	HS
Vertical back porch	T_{VBP}		2		4	HS
Vertical data start line		T _{VS +} T _{VBP}	4		8	HS
Vertical blanking period	T_{VBL}	T _{VS} + T _{VBP} + T _{VFP}	6		10	HS
Vertical active area	T _{VDISP}			320		HS
Vertical refresh rate	TVRR	Frame rate	61.75	65	68.25	Hz
Horizontal Timing						
Horizontal cycle period	T _{HP}		272		512	PCLK
Horizontal low pulse width	T _{HS}		2		256	PCLK
Horizontal front porch	T _{HFP}		2		256	PCLK
Horizontal back porch	T _{HBP}		2		256	PCLK
Harizantal data start point		T _{HS} + T _{HBP}	30		256	PCLK
Horizontal data start point		f _{HS} + f _{HBP}	1.0			μS
Horizontal blanking period	T _{HBL}	T _{HS} + T _{HBP} + T _{HFP}	32		256	PCLK
Horizontal active area	T _{HDISP}			240		PCLK
Pixel clock cycle	T _{PCLKCYC}		66.7		174	ns
When TVRR=65Hz	fpclkcyc		5.8		15.0	MHz


Note 1. VDDI=1.65 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃ (to +85℃ no damage)

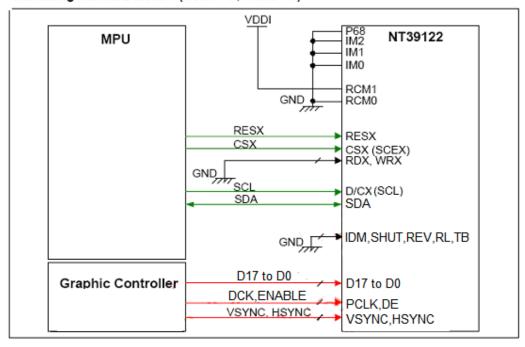
Note 2. Data lines can be set to "High" or "Low" during blanking time - Don't care.

Note 3. HP is multiples of eight PCLK.

10-3) Parallel Interface Characteristics (80-series MPU)

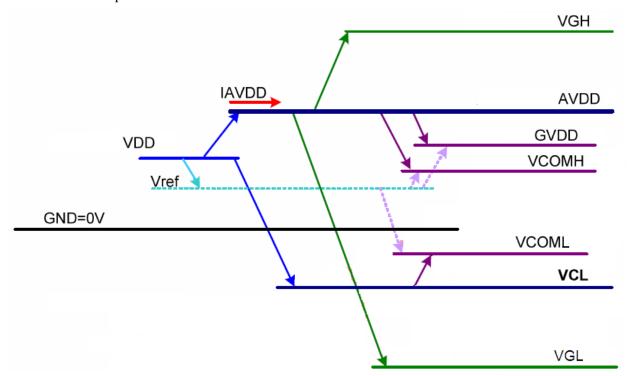

Parallel Interface 18,16,9,8-bits bus (80-series MCU)

Signal	Symbol	Parameter		MAX	Unit	Description		
D/CX	tast	Address setup time	10		ns	_		
D/CX	tант	Address hold time (Write/Read)	10		ns			
	tснw	Chip select "H" pulse width	0		ns			
csx	tcs	Chip select setup time (Write)	20		ns			
	trcs	Chip select setup time (Read ID)	35		ns			
	trcsғм	Chip select setup time (Read FM)	320		ns	-(3-transfer for one pixel)		
	tcsF	Chip select wait time (Write/Read)	10		ns			
	tсsн	Chip select hold time	10		ns			
	twc	Write cycle	65		ns			
WRX	twrn	Control pulse "H" duration	20		ns			
	twrL	Control pulse "L" duration	20		ns			
	trc	Read cycle (ID)	160		ns			
RDX (ID)	tron	Control pulse "H" duration (ID)	90		ns	When read ID data		
	trdl	Control pulse "L" duration (ID)	45		ns			
	trсғм	Read cycle (FM)	450 90		ns	When read from frame		
RDX (FM)	trdhfm	Control pulse "H" duration (FM)			ns	memory		
	trdlfm	Control pulse "L" duration (FM)	355		ns	memory		
D[17:0]	tost	Data setup time	10		ns			
	tонт	Data hold time	10		ns	For maximum C20nF F		
	trат	Read access time (ID)		40	ns	For maximum CL=30pF For minimum CL=8pF		
	tratem			340	ns	Tillillillidili GE-Opi		
	tорн			80	ns			


Note 1: VDD1=1.65 to 3.3V, VDD=2.5 to 3.3V, AGND=CGND=VGS=DGND=0V, Ta=-30 to 70 $^{\circ}$ C (to +85 $^{\circ}$ C no damage)

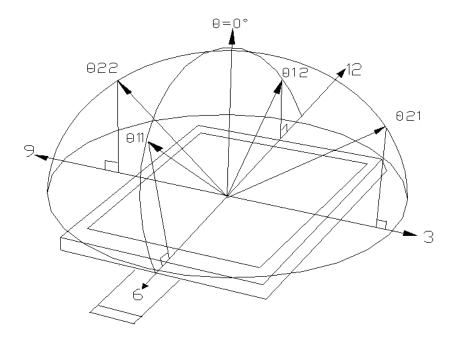
10-4) Interfacing with 80-series MPU 18-Bit Bus (P68='0', IM2-0='110')(RCM1='0', RCM0='x')

Interfacing with RGB mode 1 (RCM1='1', RCM0='0')



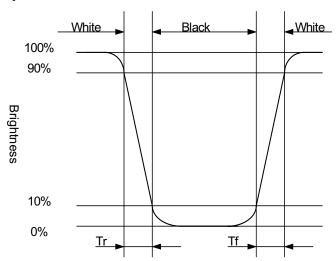

```
10-5) Display on Flow
                               //Gamma control setting
//Software setting
                                                               Init_Data_Comm(0x00E5);
                                                               Init_Data_Param(0x007c);
                               Init_Data_Comm(0x00E0);
                                                               Init_Data_Param(0x0056);
Init_Data_Comm(0x0001);
                               Init_Data_Param(0x000f);
                                                               Init_Data_Param(0x0077);
DelayX1ms(5);
                               Init_Data_Param(0x0077);
                                                               Init_Data_Param(0x0014);
                               Init Data Param(0x0045);
                                                               Init_Data_Param(0x000d);
Init_Data_Comm(0x0011);
                               Init_Data_Param(0x0070);
                                                               Init_Data_Param(0x0000);
DelayX1ms(120);
                               Init_Data_Param(0x000a);
                                                               Init_Data_Param(0x004f);
                               Init_Data_Param(0x0002);
                                                               Init_Data_Param(0x00f7);
Init_Data_Comm(0x00FE);
                               Init_Data_Param(0x0083);
                                                               Init Data Param(0x0000);
Init_Data_Param(0x0000);
                               Init_Data_Param(0x0000);
                                                               Init Data Param(0x0006);
                               Init_Data_Param(0x0007);
                                                               Init_Data_Param(0x0000);
                               Init_Data_Param(0x0000);
//Power control setting
                               Init_Data_Param(0x0000);
                                                              //Display data write & Display on Seeting
Init Data Comm(0x00C0);
                               Init_Data_Comm(0x00E1);
Init_Data_Param(0x0006);
                               Init_Data_Param(0x007c);
                                                               Init_Data_Comm(0x00C7);
                                                               Init_Data_Param(0x00B0);
                               Init_Data_Param(0x0056);
Init_Data_Comm(0x00C1);
                               Init_Data_Param(0x0077);
Init_Data_Param(0x0005);
                                                               Init_Data_Comm(0x003A);
                               Init_Data_Param(0x0014);
                                                               Init_Data_Param(0x0055);
                               Init_Data_Param(0x000d);
Init_Data_Comm(0x00C2);
                               Init_Data_Param(0x0000);
Init_Data_Param(0x0005);
                                                               Init_Data_Comm(0x0036);
                               Init_Data_Param(0x004f);
Init_Data_Param(0x0000);
                                                               Init_Data_Param(0x0008);
                               Init_Data_Param(0x00f7);
                               Init_Data_Param(0x0000);
Init_Data_Comm(0x00C3);
                                                               Init_Data_Comm(0x0036);
                               Init_Data_Param(0x0006);
Init_Data_Param(0x0005);
                                                               Init_Data_Param(0x0000);
                               Init_Data_Param(0x0000);
Init_Data_Param(0x0000);
                               Init_Data_Comm(0x00E2);
Init_Data_Comm(0x00C4);
                                                               Init_Data_Comm(0x002A);
                               Init_Data_Param(0x000f);
Init Data Param(0x0005);
                                                               Init_Data_Param(0x0000);
                               Init_Data_Param(0x0077);
Init_Data_Param(0x0000);
                                                               Init_Data_Param(0x0000);
                               Init_Data_Param(0x0045);
                                                               Init Data Param(0x0000);
                               Init_Data_Param(0x0070);
Init_Data_Comm(0x00C5);
                                                               Init_Data_Param(0x00EF);
                               Init_Data_Param(0x000a);
Init Data Param(0x0050);
                               Init_Data_Param(0x0002);
Init_Data_Param(0x0028);
                                                               Init_Data_Comm(0x002B);
                               Init_Data_Param(0x0083);
                                                               Init_Data_Param(0x0000);
                               Init_Data_Param(0x0000);
Init_Data_Comm(0x00C7);
                                                               Init_Data_Param(0x0000);
                               Init_Data_Param(0x0007);
Init_Data_Param(0x00C3);
                                                               Init_Data_Param(0x0001);
                               Init_Data_Param(0x0000);
                               Init_Data_Param(0x0000);
                                                               Init_Data_Param(0x003F);
//Display control setting
                               Init_Data_Comm(0x00E3);
                                                               Init_Data_Comm(0x002C);
                               Init_Data_Param(0x007c);
Init_Data_Comm(0x00B1);
                                                               Init_Data_Comm(0x0029);
                               Init_Data_Param(0x0056);
Init_Data_Param(0x005a);
                               Init_Data_Param(0x0077);
                                                               DelayX1ms(5);
Init_Data_Param(0x0001);
                               Init_Data_Param(0x0014);
                               Init_Data_Param(0x000d);
Init_Data_Comm(0x00B2);
                               Init_Data_Param(0x0000);
Init_Data_Param(0x006A);
                               Init_Data_Param(0x004f);
Init_Data_Param(0x0015);
                               Init_Data_Param(0x00f7);
                               Init_Data_Param(0x0000);
Init_Data_Comm(0x00B3);
                               Init_Data_Param(0x0006);
Init_Data_Param(0x006A);
                               Init_Data_Param(0x0000);
Init_Data_Param(0x0015);
                               Init_Data_Comm(0x00E4);
Init Data Comm(0x00B4);
                               Init_Data_Param(0x000f);
Init_Data_Param(0x0003);
                               Init_Data_Param(0x0077);
                               Init_Data_Param(0x0045);
Init_Data_Comm(0x00B6);
                               Init_Data_Param(0x0070);
Init Data Param(0x0031);
                               Init_Data_Param(0x000a);
Init_Data_Param(0x0002);
                               Init_Data_Param(0x0002);
                               Init_Data_Param(0x0083);
Init_Data_Comm(0x0035);
                               Init_Data_Param(0x0000);
Init_Data_Param(0x0001);
                               Init_Data_Param(0x0007);
                               Init_Data_Param(0x0000);
Init_Data_Comm(0x0026);
                               Init_Data_Param(0x0000);
Init_Data_Param(0x0010);
```


11. Power On Sequence


12. Optical Characteristics

12-1) Specification:

 $Ta=25^{\circ}C$


Paramo	eter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing Angle	Horizontal	θ (Horizontal)		70	75		deg	Note 12-1
	Vertical	θ (12 o'clock)	CR > 10	45	50		deg	
		θ (6 o'clock)		55	60		deg	
Contrast Ratio		CR	At optimized Viewing angle	200	400		-	Note 12-2
Daguanga tima	Rise	Tr	$\theta = 0^{\circ}$		15	30	ms	Note 12-3
Response time	Fall Tf		0 -0		25	50	ms	Note 12-3
Brightness		L	$\theta = 0^{\circ}/\varphi = 0$	400	450		cd/m²	Note 12-4
Luminance Uniformity		U	-	75	80		%	Note 12-6
	White	X	θ =0°/ φ =0	0.28	0.32	0.36	1	
		у		0.30	0.34	0.38	1	
	Red	X		0.55	0.59	0.63	-	
Color		y		0.26	0.30	0.34	-	
Chromaticity	Green	X		0.29	0.33	0.37	-	
		y		0.53	0.57	0.61	-	
	Blue	X		0.11	0.15	0.19	-	
		у		0.10	0.14	0.18	ı	
LED Life Time			+25°C	20000	30000		hrs	Note 12-5
Cross Talk		$\theta = 0^{\circ}$			3.5	%	Note 12-7	

Note 12-1: The definitions of viewing angles are as follow

Note 12-2: The definition of contrast ratio $CR = \frac{Luminance at gray level 63}{Luminance at gray level 0}$

Note 12-3: Definition of Response Time Tr and Tf

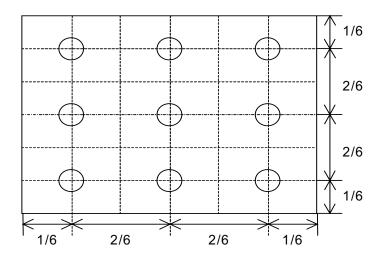
Note 12-4: Topcon BM-5A or BM-7 fast luminance meter 1° field of view is used in the testing

Note 12-5: The "LED Life time " is defined as the module brightness decrease to 50% original Brightness that the ambient temperature is 25° C and I_{LED} =20mA.

Note 12-6: The uniformity of LCD is defined as

The Minimum Brightness of the 9 testing Points

The Maximum Brightness of the 9 testing Points


Luminance meter: BM-5A or BM-7 fast(TOPCON)

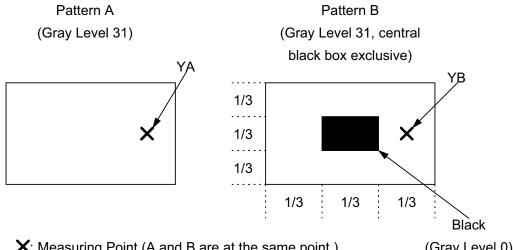
Measurement distance: 500 mm +/- 50 mm

Ambient illumination : < 1 Lux

Measuring direction: Perpendicular to the surface of module

The test pattern is white (Gray Level 63).

Note 12-7: Cross Talk (CTK) =
$$\frac{|YA-YB|}{YA}$$
 ×100%


YA: Brightness of Pattern A YB: Brightness of Pattern B

Luminance meter: BM 5A or BM-7 fast (TOPCON)

Measurement distance: 500 mm +/- 50 mm

Ambient illumination : < 1 Lux

Measuring direction: Perpendicular to the surface of module

X: Measuring Point (A and B are at the same point.)

(Gray Level 0)

13. Handling Cautions

13-1) Mounting of module

- a) Please power off the module when you connect the input/output connector.
- b) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
- c) Protective film (Laminator) is applied on surface to protect it against scratches and dirt's. It is recommended to peel off the laminator before use and taking care of static electricity.
- d) Please following the tear off direction as figure 13-1 to remove the protective film as slowly as possible, so that electrostatic charge can be minimized.

13-2) Precautions in mounting

- a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
- b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
- c) TFT-LCD module uses glass, which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
- d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.

13-3) Adjusting module

- a) Adjusting volumes on the rear face of the module have been set optimally before shipment.
- b) Therefore, do not change any adjusted values. If adjusted values are changed, the specifications described may not be satisfied.

13-4) Others

- a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
- b) Store the module at a room temperature place.
- c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
- d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel.

 Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
- e) Observe all other precautionary requirements in handling general electronic components.
- f) Please adjust the voltage of common electrode as material of attachment by 1 module.

13-5) Polarizer mark

The polarizer mark is to describe the direction of wide view angle film how to mach up with the rubbing direction.

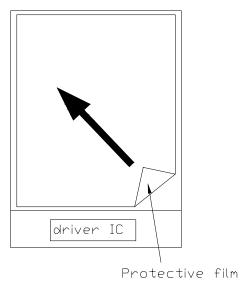
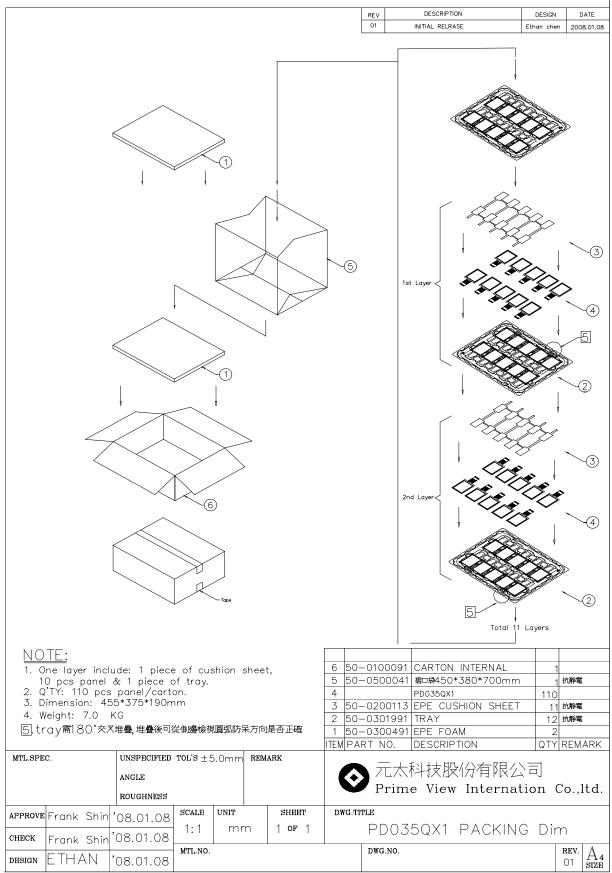


Figure 13-1 the way to peel off protective film

14. Reliability Test

No	Test Item	Test Condition				
1	High Temperature Storage Test	$Ta = 95^{\circ}C$, 240 hrs				
2	Low Temperature Storage Test	$Ta = -40^{\circ}C$, 240 hrs				
3	High Temperature Operation Test	$Ta = 85^{\circ}C$, 240 hrs				
4	Low Temperature Operation Test	$Ta = -30^{\circ}C$, 240 hrs				
5	High Temperature & High Humidity	$Ta = 60^{\circ}C$, 90%RH, 240 hrs				
	Operation Test	(No Condensation)				
6	Thermal Cycling Test (non-operating)	$-25^{\circ}\text{C} \rightarrow 70^{\circ}\text{C}$, 200 Cycles				
	Thermal Cycling Test (non-operating)	30min 30min				
		Frequency: 10 ~ 55 H _Z ,				
7	Vibration Test (non-operating)	Amplitude: 1 mm				
/ [V10]		Sweep time: 11 min				
		Test Period: 6 Cycles for each direction of X, Y, Z				
8 S1	Shock Test (non-operating)	100G, 6ms				
	Shock Test (non-operating)	Direction: $\pm X$, $\pm Y$, $\pm Z$ Cycle: 3 times				
9	Electrostatic Discharge Test (non-operating)	200pF, 0Ω ±200V				
	Electrostatic Discharge Test (non-operating)	1 time / each terminal				

Ta: ambient temperature


Note: The protective film must be removed before temperature test.

[Criteria]

In the standard conditions, there is not display function NG issue occurred. (Including: line defect, no image). All the cosmetic specification is judged before the reliability stress.

15. Packing Diagram

